Radius of curvature

Basic gear formulas:

$$D_p = \frac{Z}{d_0}$$

$$d_b = d_0 * \cos \phi \text{ [in.]}$$

$$t=\frac{\pi}{2D_p}\left[in.\right]$$

Conversion from degrees to radians:

$$\hat{\phi} = \frac{\pi \phi}{180} [rad.]$$

Where:

Z – number of teeth

 d_0 – pitch diameter [in.]

 d_b – base diameter [in.]

 D_p – diametral pitch [dimensionless]

 ϕ – pressure angle [degree]

t - CTT, circular tooth thickness [in.]

General form of an involute function:

$$\hat{\Theta} = inv\phi = \tan\phi - \hat{\phi}$$

Where:

 $\hat{\Theta}$ – polar angle [radians]

0 – polar angle [degree]

 $inv\phi-involute\ function\ of\ an\ angle\ [rad.]$

 ϕ – involute pressure angle [degree]

 $\hat{\phi}$ – involute pressure angle [radians]

Radius of curvature at an arbitrary point on the involute curve:

$$\rho_A = (R_A^2 - R_b^2)^{0.5}$$

Where:

 $\rho_{\rm A}-$ radius of curvature, at point "A" on the involute

 R_A – radius to point "A"

 R_b – base radius

This could be expressed as a function of the pressure angle:

$$\rho_A = R_A * \sin \phi_A$$

Where:

 ϕ_A – pressure angle at point "A"

Radius of curvature at pitch diameter:

$$\rho = \frac{d * \sin \phi}{2}$$

Where: $\rho - radius of curvature$

d- pitch diameter $\phi-$ pressure angle at pitch diameter

NOTE:

As $R_b \to \infty$ the $\rho \to \infty$ and therefore the tooth shape becomes a straight line as in the basic involute rack

